217 research outputs found

    A Novel Algorithm for Solving Structural Optimization Problems

    Get PDF
    In the past few decades, metaheuristic optimization methods have emerged as an effective approach for addressing structural design problems. Structural optimization methods are based on mathematical algorithms that are population-based techniques. Optimization methods use technology development to employ algorithms to search through complex solution space to find the minimum. In this paper, a simple algorithm inspired by hurricane chaos is proposed for solving structural optimization problems. In general, optimization algorithms use equations that employ the global best solution that might cause the algorithm to get trapped in a local minimum. Hence, this methodology is avoided in this work. The algorithm was tested on several common truss examples from the literature and proved efficient in finding lower weights for the test problems

    Unconstrained Dynamic Simulation on Offshore Dual Derrick

    Get PDF
    With the increase in demand for oil and oil products, the petroleum industry is faced with the requirement for more complex tools to increase production at lower prices. The complexity of drilling tools is manifested in the complex geometry, fabrication, assembly, deformations, stresses and loads acting on them. This study introduces a dual derrick simulation procedure in a marine environment which provides a step towards a better understanding by giving a simulation close to the real state. The derrick was considered in equilibrium, and then the derrick vibration was simulated using field data in order to obtain stress distribution. This implies that the derrick can move freely and cause deformations in all directions without constraints. In this paper, the finite element method was employed to simulate the derrick in a static state and in motion, and then the obtained stress distribution was compared for both cases. A literature review on the analysis of environment working conditions is provided. The results showed that the vibration of the platform increased the stress considerably. The maximum combined stress increased by 27 %, while the maximum bending stress increased by 40 % and reached considerably higher values in the beams connected to the top of the derrick

    A Noise-Tolerant Zeroing Neural Network for Time-Dependent Complex Matrix Inversion Under Various Kinds of Noises

    Get PDF
    Complex-valued time-dependent matrix inversion (TDMI) is extensively exploited in practical industrial and engineering fields. Many current neural models are presented to find the inverse of a matrix in an ideal noise-free environment. However, the outer interferences are normally believed to be ubiquitous and avoidable in practice. If these neural models are applied to complex-valued TDMI in a noise environment, they need to take a lot of precious time to deal with outer noise disturbances in advance. Thus, a noise-suppression model is urgent to be proposed to address this problem. In this article, a complex-valued noise-tolerant zeroing neural network (CVNTZNN) on the basis of an integral-type design formula is established and investigated for finding complex-valued TDMI under a wide variety of noises. Furthermore, both convergence and robustness of the CVNTZNN model are carefully analyzed and rigorously proved. For comparison and verification purposes, the existing zeroing neural network (ZNN) and gradient neural network (GNN) have been presented to address the same problem under the same conditions. Numerical simulation consequences demonstrate the effectiveness and excellence of the proposed CVNTZNN model for complex-valued TDMI under various kinds of noises, by comparing the existing ZNN and GNN models

    Simulating the effect of climate change on soil microbial community in an Abies georgei var. smithii forest

    Get PDF
    Qinghai–Tibet Plateau is considered a region vulnerable to the effects of climate change. Studying the effects of climate change on the structure and function of soil microbial communities will provide insight into the carbon cycle under climate change. However, to date, changes in the successional dynamics and stability of microbial communities under the combined effects of climate change (warming or cooling) remain unknown, which limits our ability to predict the consequences of future climate change. In this study, in situ soil columns of an Abies georgei var. smithii forest at 4,300 and 3,500 m elevation in the Sygera Mountains were incubated in pairs for 1 year using the PVC tube method to simulate climate warming and cooling, corresponding to a temperature change of ±4.7°C. Illumina HiSeq sequencing was applied to study alterations in soil bacterial and fungal communities of different soil layers. Results showed that warming did not significantly affect the fungal and bacterial diversity of the 0–10 cm soil layer, but the fungal and bacterial diversity of the 20–30 cm soil layer increased significantly after warming. Warming changed the structure of fungal and bacterial communities in all soil layers (0–10 cm, 10–20 cm, and 20–30 cm), and the effect increased with the increase of soil layers. Cooling had almost no significant effect on fungal and bacterial diversity in all soil layers. Cooling changed the structure of fungal communities in all soil layers, but it showed no significant effect on the structure of bacterial communities in all soil layers because fungi are more adapted than bacteria to environments with high soil water content (SWC) and low temperatures. Redundancy analysis (RDA) and hierarchical analysis showed that changes in soil bacterial community structure were primarily related to soil physical and chemical properties, whereas changes in soil fungal community structure primarily affected SWC and soil temperature (Soil Temp). The specialization ratio of fungi and bacteria increased with soil depth, and fungi were significantly higher than bacteria, indicating that climate change has a greater impact on microorganisms in deeper soil layers, and fungi are more sensitive to climate change. Furthermore, a warmer climate could create more ecological niches for microbial species to coexist and increase the strength of microbial interactions, whereas a cooler climate could have the opposite effect. However, we found differences in the intensity of microbial interactions in response to climate change in different soil layers. This study provides new insights to understand and predict future effects of climate change on soil microbes in alpine forest ecosystems

    Degraded Synergistic Recruitment of sEMG Oscillations for Cerebral Palsy Infants Crawling

    Get PDF
    Background: Synergistic recruitment of muscular activities is a generally accepted mechanism for motor function control, and motor dysfunction, such as cerebral palsy (CP), destroyed the synergistic electromyography activities of muscle group for limb movement. However, very little is known how motor dysfunction of CP affects the organization of the myoelectric frequency components due to the abnormal motor unit recruiting patterns.Objectives: Exploring whether the myoelectric activity can be represented with synergistic recruitment of surface electromyography (sEMG) frequency components; evaluating the effect of CP motor dysfunction on the synergistic recruitment of sEMG oscillations.Methods: Twelve CP infants and 17 typically developed (TD) infants are recruited for self-paced crawling on hands and knees. sEMG signals have been recorded from bilateral biceps brachii (BB) and triceps brachii (TB) muscles. Multi-scale oscillations are extracted via multivariate empirical mode decomposition (MEMD), and non-negative matrix factorization (NMF) method is employed to obtain synergistic pattern of these sEMG oscillations. The coefficient curve of sEMG oscillation synergies are adopted to quantify the time-varying recruitment of BB and TB myoelectric activity during infants crawling.Results: Three patterns of sEMG oscillation synergies with specific frequency ranges are extracted in BB and TB of CP or TD infants. The contribution of low-frequency oscillation synergy of BB in CP group is significantly less than that in TD group (p < 0.05) during forward swing phase for slow contraction; however, this low-frequency oscillation synergy keep higher level during the backward swing phase crawling. For the myoelectric activities of TB, there is not enough high-frequency oscillation recruitment of sEMG for the fast contraction in propulsive phase of CP infants crawling.Conclusion: Our results reveal that, the myoelectric activities of a muscle can be manifested as sEMG oscillation synergies, and motor dysfunction of CP degrade the synergistic recruitment of sEMG oscillations due to the impaired CNS regulation and destroyed MU/muscle fiber. Our preliminary work suggests that time-varying coefficient curve of sEMG oscillation synergies is a potential index to evaluate the abnormal recruitment of electromyography activities affected by CP disorders

    Effects of physical training programs on female tennis players’ performance: a systematic review and meta-analysis

    Get PDF
    Background: Tennis is among the world’s most popular and well-studied sports. Physical training has commonly been used as an intervention among athletes. However, a comprehensive review of the literature on the effects of physical training programs on female tennis players’ performance is lacking. Therefore, this systematic review and meta-analysis aimed to determine the effects of physical training on performance outcomes in female tennis players.Methods: A comprehensive search was conducted on Web of Science, PubMed, SPORTDicus, Scopus, and CNKI from inception until July 2023 to select relevant articles from the accessible literature. Only controlled trials were included if they examined the effects of physical training on at least one measure of tennis-specific performance in female tennis players. The Cochrane RoB tool was employed to assess the risk of bias. The CERT scale was used to examine the quality of program information. The GRADE approach was adopted to evaluate the overall quality of the evidence. The Comprehensive Meta-Analysis software was used for the meta-analysis.Results: Nine studies were selected for the systematic review and seven for the meta-analysis, totaling 222 individuals. The study’s exercise programs lasted 6–36 weeks, with training sessions ranging from 30 to 80 min, conducted one to five times per week. Muscle power (ES = 0.72; p = 0.003), muscle strength (ES = 0.65; p = 0.002), agility (ES = 0.69; p = 0.002), serve velocity (ES = 0.72; p = 0.013), and serve accuracy (ES = 1.14; p = 0.002) demonstrated significant improvement following physical training, while no notable changes in linear sprint speed (ES = 0.63; p = 0.07) were detected.Conclusion: Although research on physical training in sports is diversified, studies on training interventions among female tennis players are scarce. This review found that existing training programs yield some favorable outcomes for female tennis players. However, further research with high methodological quality is warranted on the tailoring of specific training programs for female tennis players. There should be more consistent measuring and reporting of data to facilitate meaningful data pooling for future meta-analyses

    Review of the Early Diagnoses and Assessment of Rejection in Vascularized Composite Allotransplantation

    Get PDF
    The emerging field of vascular composite allotransplantation (VCA) has become a clinical reality. Building upon cutting edge understandings of transplant surgery and immunology, complex grafts such as hands and faces can now be transplanted with success. Many of the challenges that have historically been limiting factors in transplantation, such as rejection and the morbidity of immunosuppression, remain challenges in VCA. Because of the accessibility of most VCA grafts, and the highly immunogenic nature of the skin in particular, VCA has become the focal point for cross-disciplinary approaches to developing novel approaches for some of the most challenging immunological problems in transplantation, particularly the early diagnoses and assessment of rejection. This paper provides a historically oriented introduction to the field of organ transplantation and the evolution of VCA
    • …
    corecore